Malaria parasite CelTOS targets the inner leaflet of cell membranes for pore-dependent disruption
نویسندگان
چکیده
Apicomplexan parasites contain a conserved protein CelTOS that, in malaria parasites, is essential for traversal of cells within the mammalian host and arthropod vector. However, the molecular role of CelTOS is unknown because it lacks sequence similarity to proteins of known function. Here, we determined the crystal structure of CelTOS and discovered CelTOS resembles proteins that bind to and disrupt membranes. In contrast to known membrane disruptors, CelTOS has a distinct architecture, specifically binds phosphatidic acid commonly present within the inner leaflet of plasma membranes, and potently disrupts liposomes composed of phosphatidic acid by forming pores. Microinjection of CelTOS into cells resulted in observable membrane damage. Therefore, CelTOS is unique as it achieves nearly universal inner leaflet cellular activity to enable the exit of parasites from cells during traversal. By providing novel molecular insight into cell traversal by apicomplexan parasites, our work facilitates the design of therapeutics against global pathogens.
منابع مشابه
CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts.
The malarial parasite has two hosts in its life cycle, a vertebrate and a mosquito. We report here that malarial invasion into these hosts is mediated by a protein, designated cell-traversal protein for ookinetes and sporozoites (CelTOS), which is localized to micronemes that are organelles for parasite invasive motility. Targeted disruption of the CelTOS gene in Plasmodium berghei reduced para...
متن کاملMembrane Transformation during Malaria Parasite Release from Human Red Blood Cells
Three opposing pathways are proposed for the release of malaria parasites from infected erythrocytes: coordinated rupture of the two membranes surrounding mature parasites; fusion of erythrocyte and parasitophorus vacuolar membranes (PVM); and liberation of parasites enclosed within the vacuole from the erythrocyte followed by PVM disintegration. Rupture by cell swelling should yield erythrocyt...
متن کاملThe Plasmodium falciparum Cell-Traversal Protein for Ookinetes and Sporozoites as a Candidate for Preerythrocytic and Transmission-Blocking Vaccines
Recent studies have shown that immune responses against the cell-traversal protein for Plasmodium ookinetes and sporozoites (CelTOS) can inhibit parasite infection. While these studies provide important evidence toward the development of vaccines targeting this protein, it remains unknown whether these responses could engage the Plasmodium falciparum CelTOS in vivo Using a newly developed roden...
متن کاملStructural Features of Apicomplexan Pore-Forming Proteins and Their Roles in Parasite Cell Traversal and Egress
Apicomplexan parasites cause diseases, including malaria and toxoplasmosis, in a range of hosts, including humans. These intracellular parasites utilize pore-forming proteins that disrupt host cell membranes to either traverse host cells while migrating through tissues or egress from the parasite-containing vacuole after replication. This review highlights recent insight gained from the newly a...
متن کاملImmunization with Pre-Erythrocytic Antigen CelTOS from Plasmodium falciparum Elicits Cross-Species Protection against Heterologous Challenge with Plasmodium berghei
BACKGROUND The Plasmodium protein Cell-traversal protein for ookinetes and sporozoites (CelTOS) plays an important role in cell traversal of host cells in both, mosquito and vertebrates, and is required for successful malaria infections. CelTOS is highly conserved among the Plasmodium species, suggesting an important functional role across all species. Therefore, targeting the immune response t...
متن کامل